

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Image Augmentation

It is hard to obtain photogenic samples of every aspect. Image augmentation enables the auto-generation of new samples from existing ones through random adjustment from rotation, shifts, zoom, brightness etc. The below samples pertains to increasing samples when all samples in classes are balanced

from keras_preprocessing.image import ImageDataGenerator

train_aug = ImageDataGenerator(rotation_range=360, # Degree range for random rotations
 width_shift_range=0.2, # Range for random horizontal shifts
 height_shift_range=0.2, # Range for random vertical shifts
 zoom_range=0.2, # Range for random zoom
 horizontal_flip=True, # Randomly flip inputs horizontally
 vertical_flip=True, # Randomly flip inputs vertically
 brightness_range=[0.5, 1.5])

we should not augment validation and testing samples
val_aug = ImageDataGenerator()
test_aug = ImageDataGenerator()

After setting the augmentation settings, we will need to decide how to “flow” the data, original samples into the model. In this function, we can also resize the images automatically if necessary. Finally to fit the model, we use the model.fit_generator function so that for every epoch, the full original samples will be augmented randomly on the fly. They will not be stored in memory for obvious reasons.

Essentially, there are 3 ways to do this.

Flow from Memory

First, we can flow the images from memory, i.e., flow, which means we have to load the data in memory first.

batch_size = 32
img_size = 100

train_flow = train_aug.flow(X_train, Y_train,
 target_size=(img_size,img_size),
 batch_size=batch_size)

val_flow = val_aug.flow(X_val, Y_val,
 target_size=(img_size,img_size),
 batch_size=batch_size)

model.fit_generator(train_flow,
 steps_per_epoch=32,
 epochs=15,
 verbose=1,
 validation_data=val_flow,
 use_multiprocessing=True,
 workers=2)

Flow from Dataframe

Second, we can flow the images from a directory flow_from_dataframe, where all classes of images are in that single directory. This requires a dataframe which indicates which image correspond to which class.

dir = r'/kaggle/input/plant-pathology-2020-fgvc7/images'
train_flow = train_aug.flow_from_dataframe(train_df,
 directory=dir,
 x_col='image_name',
 y_col=['class1','class2','class3','class4'],
 class_mode='categorical'
 batch_size=batch_size)

Flow from Directory

Third, we can flow the images from a main directory flow_from_directory, where all each class of images are in individual subdirectories.

to include all subdirectories' images, no need specific classes
train_flow = train_aug.flow_from_directory(directory=dir,
 class_mode='categorical',
 target_size=(img_size,img_size),
 batch_size=32)

to include specific subdirectories' images, put list of subdirectory names under classes
train_flow = train_aug.flow_from_directory(directory=dir,
 classes=['subdir1', 'subdir2', 'subdir3'],
 class_mode='categorical',
 target_size=(img_size,img_size),
 batch_size=32)

Imbalance Data

We can also use Kera’s ImageDataGenerator to generate new augmented images when there is class imbalance. Imbalanced data can caused the model to predict the class with highest samples.

from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array

img = r'/Users/Desktop/post/IMG_20200308_092140.jpg'

load the input image, convert it to a NumPy array, and then
reshape it to have an extra dimension
image = load_img(img)
image = img_to_array(image)
image = np.expand_dims(image, axis=0)

augmentation settings
aug = ImageDataGenerator(rotation_range=15,
 width_shift_range=0.1,
 height_shift_range=0.1,
 shear_range=0.01,
 zoom_range=[0.9, 1.25],
 horizontal_flip=True,
 vertical_flip=False,
 fill_mode='reflect',
 data_format='channels_last',
 brightness_range=[0.5, 1.5])

define input & output
imageGen = aug.flow(image, batch_size=1, save_to_dir=r'/Users/Desktop/post/',
 save_prefix="image", save_format="jpg")

define number of new augmented samples
for count, i in enumerate(imageGen):
 store.append(i)
 if count == 5:
 break

Resources

	https://medium.com/datadriveninvestor/keras-imagedatagenerator-methods-an-easy-guide-550ecd3c0a92.

Basics of Images

Convert to Array

Using Numpy (1)

import numpy as np
import matplotlib.pyplot as plt

imgArr = np.asarray('imagepath')
plt.imshow(pic_arr)

Using Numpy (2)

Sometimes, a Type error will be prompted using cv2.rectangle() when the input array is the
usual numpy array. We should use the following instead.

import numpy as np
imgArr = np.ascontiguousarray('imagepath')

Using OpenCV

import cv2

imgArr = cv2.imread('imagepath')
cv2.imshow('image',img)

Wait for something on keyboard to be pressed to close window.
0 refers to 0 miliseconds of waiting
cv2.waitKey(0)

From base64 string

import base64
import cv2

npArr = np.fromstring(base64.b64decode(encodedImage), np.uint8)
imgArr = cv2.imdecode(npArr, cv2.IMREAD_ANYCOLOR)

Saving Images

cv2.imwrite('my_new_picture.jpg', imgArr)

Resizing Imagesw

Resizing by a specific scale

img = cv2.imread('imagepath', cv2.IMREAD_UNCHANGED)

scale = 0.6 # percent of original size
width = int(img.shape[1] * scale)
height = int(img.shape[0] * scale)
resized = cv2.resize(img, (width, height), interpolation = cv2.INTER_AREA)

Resizing by specific height

def img_scaling(frame, new_height=600):
 '''
 rescale image based on a fixed height, and width with same aspect ratio

 Parameters

 frame (array): image array

 Returns

 new_width (int): size of new width
 new_height (int): size of new height
 '''
 width = frame.shape[1]
 height = frame.shape[0]
 if height > new_height:
 scale = new_height/height
 new_width = int(width * scale)
 else:
 new_width = width
 new_height = height
 return new_width, new_height

new_width, new_height = img_scaling(frame)
resized = cv2.resize(img, (new_width, new_height), interpolation = cv2.INTER_AREA)

Drawing on Images

One of the most important reason to draw on images is to draw bounding boxes
representing the prediction output.

rectangles

pt1 = top left
pt2 = bottom right
cv2.rectangle(imgArr, pt1=(384,0), pt2=(510,128), \
 color=(0,255,0), thickness=5)

Here’s a typical example function from xiaochus’s YOLO on how it is used.

def draw(image, boxes, scores, classes, all_classes):
 '''Draw the boxes on the image.

 Argument:
 image: original image.
 boxes: ndarray, boxes of objects.
 classes: ndarray, classes of objects.
 scores: ndarray, scores of objects.
 all_classes: all classes name.
 '''
 for box, score, cl in zip(boxes, scores, classes):
 x, y, w, h = box

 top = max(0, np.floor(x + 0.5).astype(int))
 left = max(0, np.floor(y + 0.5).astype(int))
 right = min(image.shape[1], np.floor(x + w + 0.5).astype(int))
 bottom = min(image.shape[0], np.floor(y + h + 0.5).astype(int))

 cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
 cv2.putText(image, '{0} {1:.2f}'.format(all_classes[cl], score),
 (top, left - 6),
 cv2.FONT_HERSHEY_SIMPLEX,
 0.6, (0, 0, 255), 1,
 cv2.LINE_AA)

 print('class: {0}, score: {1:.2f}'.format(all_classes[cl], score))
 print('box coordinate x,y,w,h: {0}'.format(box))

Wait & Break

This is not exactly pythonic, so it means it is not as easy to decipher.
0xFF is an 8 bit binary mask that forces the result from waitKey()
to be an integer of maximum 255,
which is what a character in the keyboard can go till.

ord(char) returns the character in integers which will also be of maximum 255.

Hence by comparing the integer to the ord(char) value,
we can check for a key pressed event and break the loop.

stop when character "q" is pressed
if cv2.waitKey(0) & 0xFF == ord('q'):
 break

stop when "ESC" key is pressed
if cv2.waitKey(20) & 0xFF == 27:
 break

Once script is done, its usually good practice to call this line
It closes all windows (just in case you have multiple windows called)
cv2.destroyAllWindows()

Convolutional Neural Networks

Datasets

Data is always needed to make a good model. This pages provides sites to download
open datasets to train your model.

	CVonline: Image Databases [http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm]

	Kaggle [https://www.kaggle.com/datasets]

Installation

Installations for computer vision can prove to tricky, from nvidia GPU to
certain libraries compiled from other languages, it can turn out to extremely time-consuming.

OpenCV

Using pip install opencv-python installs the official version of cv2.
However, there are some contribution libraries which are missing because of certain issues;
to install a complete package, use pip install opencv-contrib-python instead.

EfficientNet

pip install efficientnet

Keras

Save & Load Model

For deep learning models, we do not use pickle, but instead save it as a HDF5 file.

model.save('mymodel.h5')

from keras.models import load_model
model = load_model('mymodel.h5')

Object Tracking

There are various ready made tracking APIs in opencv that we can call directly from.
Note that they are only available in the opencv-contrib-python version.

This requires a user to mark out an object of interest first.

There are various advantages and disadvantages of each algorithm, with KCF as a good
start point, while Boosting and MIL as weaker ones.

import cv2

def ask_for_tracker():
 print("Welcome! What Tracker API would you like to use?")
 print("Enter 0 for BOOSTING: ")
 print("Enter 1 for MIL: ")
 print("Enter 2 for KCF: ")
 print("Enter 3 for TLD: ")
 print("Enter 4 for MEDIANFLOW: ")
 choice = input("Please select your tracker: ")

 if choice == '0':
 tracker = cv2.TrackerBoosting_create()
 if choice == '1':
 tracker = cv2.TrackerMIL_create()
 if choice == '2':
 tracker = cv2.TrackerKCF_create()
 if choice == '3':
 tracker = cv2.TrackerTLD_create()
 if choice == '4':
 tracker = cv2.TrackerMedianFlow_create()

 return tracker

tracker = ask_for_tracker()
tracker_name = str(tracker).split()[0][1:]

cap = cv2.VideoCapture(0)
ret, frame = cap.read()

Special function allows us to draw on the very first frame our desired ROI
hit enter
roi = cv2.selectROI(frame, False)
ret = tracker.init(frame, roi)

while True:
 ret, frame = cap.read()

 # Update tracker
 success, roi = tracker.update(frame)

 # roi variable is a tuple of 4 floats
 # We need each value and we need them as integers
 (x,y,w,h) = tuple(map(int,roi))

 # Draw Rectangle as Tracker moves
 if success:
 p1 = (x, y)
 p2 = (x+w, y+h)
 cv2.rectangle(frame, p1, p2, (0,255,0), 3)
 else :
 # Tracking failure
 cv2.putText(frame, "Failure to Detect Tracking!!", (100,200), cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),3)

 # Display tracker type on frame
 cv2.putText(frame, tracker_name, (20,400), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0),3);

 # Display result
 cv2.imshow(tracker_name, frame)

 # Exit if ESC pressed
 k = cv2.waitKey(1) & 0xff
 if k == 27 :
 break

cap.release()
cv2.destroyAllWindows()

Transfer Learning

For CNN, because of the huge research done, and the complexity in architecture, we can use existing ones, with pretrained weights.

For transfer learning for image recognition, the defacto is imagenet, whereby we can specify it under the weights argument.

EfficientNet

EfficientNet [https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html] is developed by Google in 2019. It is able to achieve a high accuracy with less parameters
through a novel compound scaling method [image (e)] versus traditional methods [images (b-d)].

[image: _images/transfer_efficientnet.png]

import efficientnet.tfkeras as efn

def model(input_shape, classes):
 '''
 transfer learning from imagenet's weights, using Google's efficientnet7 architecture
 top layer (include_top) is removed as the number of classes is changed
 '''
 base = efn.EfficientNetB7(input_shape=input_shape, weights='imagenet', include_top=False)

 model = Sequential()
 model.add(base)
 model.add(GlobalAveragePooling2D())
 model.add(Dense(classes, activation='softmax'))
 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
 return model

alternatively...
def model(input_shape, classes):
 model = efn.EfficientNetB3(input_shape=input_shape, weights='imagenet', include_top=False)
 x = model.output
 x = Flatten()(x)
 x = Dropout(0.5)(x)

 output_layer = Dense(classes, activation='softmax')(x)
 model = Model(inputs=model.input, outputs=output_layer)

 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
 return model

YOLO

YOLO (You Only Look Once) is an object detection framework that works extremely fast
compared to other existing frameworks.

EfficientDet

EfficientDet [https://ai.googleblog.com/2020/04/efficientdet-towards-scalable-and.html] is also
another architecture, with the backbone using EfficientNet, developed by Google in 2019.

https://github.com/Star-Clouds/CenterFace

AutoML

Google Neural Architecture Search

Here’s a nice instructional guide on how to use [https://cloud.google.com/vision/automl/docs/quickstarts]

Videos

From Webcam

import cv2

Connects to your computer's default camera
cap = cv2.VideoCapture(0)

while True:
 # Capture frame-by-frame
 ret, frame = cap.read()

 # Our operations on the frame come here
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 cv2.imshow('frame', gray)

 # quit with "q"
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

When everything done, release the capture and destroy the windows
cap.release()
cv2.destroyAllWindows()

Get Latest Frames

OpenCV’s videocapture’s read() only reads the frames sequentially.
However, we might want to acquire the latest frame after processing the previous one,
else the latency will quickly build up overtime.

A helpful code snippet from stackoverflow can help to resolve this:
https://stackoverflow.com/questions/51722319/skip-frames-and-seek-to-end-of-rtsp-stream-in-opencv

import threading
from threading import lock

class Camera:
 """Read the latest frame from RTSP video stream.
 A daemon thread is produced that runs the stream in the background.
 When required, getFrame() will grab the latest copy of the frame from the thread.
 """

 last_frame = None
 last_ready = None
 lock = Lock()

 def __init__(self, rtsp_link):
 capture = cv2.VideoCapture(rtsp_link)
 thread = threading.Thread(
 target=self.rtsp_cam_buffer, args=(capture,), name="rtsp_read_thread"
)
 thread.daemon = True
 thread.start()

 def rtsp_cam_buffer(self, capture):
 while True:
 with self.lock:
 self.last_ready, self.last_frame = capture.read()

 def getFrame(self):
 if (self.last_ready is not None) and (self.last_frame is not None):
 return self.last_frame.copy()
 else:
 return None

This is how we call the class in.

uri = 'mask.mp4'
capture = Camera(uri)
while True:
 frame = capture.getFrame()
 if frame is not None:
 cv2.imshow('frame',frame)
 else:
 print('frame is None')

 if cv2.waitKey(25) & 0xFF == ord('q'):
 break

From File

import cv2
import time

cap = cv2.VideoCapture('../DATA/video_capture.mp4')

FRAMES PER SECOND
fps = 25

check for video file
if cap.isOpened()== False:
 print("Error opening the video file")

While the video is opened
while cap.isOpened():

 # Read the video file
 ret, frame = cap.read()

 # If we got frames, show them.
 if ret == True:

 # Display the frame at same frame rate of recording
 time.sleep(1/fps)
 cv2.imshow('frame',frame)

 if cv2.waitKey(25) & 0xFF == ord('q'):
 break

 # automatically break this whole loop if the video is over
 else:
 break

cap.release()
Closes all the frames
cv2.destroyAllWindows()

 _static/ajax-loader.gif

_images/transfer_efficientnet.png
e wider ------ -
#channels) . :
————ta—— I wider e t —
s — _— deeper

deeper
_ - = | ~
i i hiah f
: -1~ higher hi
resolution HXW : : : 1 --y--higher
i i |i__resolution A I _+_resolution

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

